tg-me.com/ds_interview_lib/686
Last Update:
В каких сценариях используются конфигурации «один к одному», «один ко многим» и «многие ко многим» на входных и выходных слоях рекуррентной нейронной сети?
Рекуррентные нейронные сети (RNN) эффективны для работы с последовательностями. Вот основные сценарии:
▪️Один к одному — редко используется для RNN. Такие задачи, как классификация изображений, не требуют обработки последовательностей, поэтому чаще решаются свёрточными сетями (CNN). Но иногда RNN применяются для классификации фиксированных последовательностей.
▪️Один ко многим — применимо в задачах генерации последовательностей на основе одного входа, например, при преобразовании изображения в текст. CNN извлекает признаки изображения, а RNN генерирует описание на выходе.
▪️Многие ко многим — классический пример RNN. Это может быть перевод текста, где входная последовательность на одном языке преобразуется в выходную на другом.
#глубокое_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/686